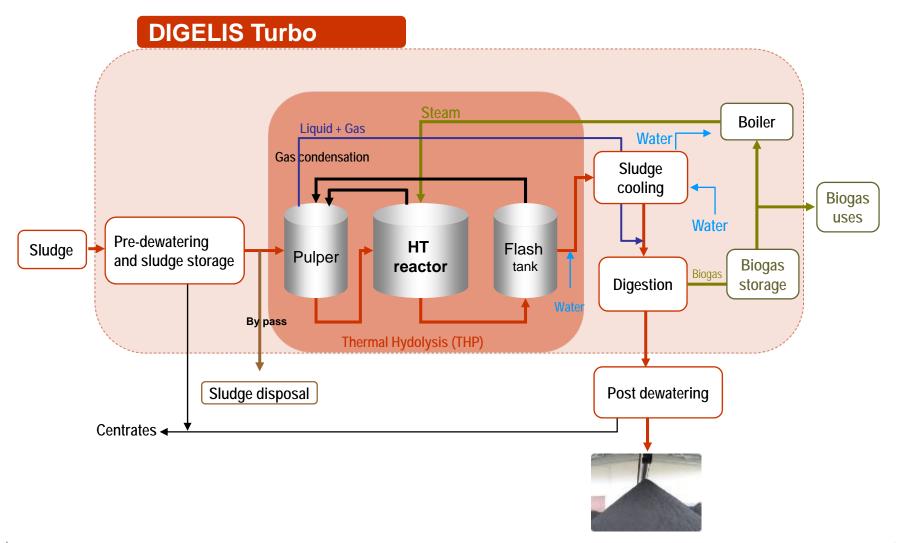
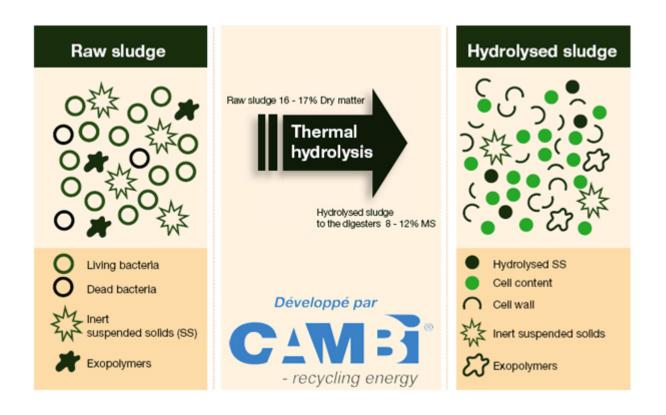

DIGELIS Turbo

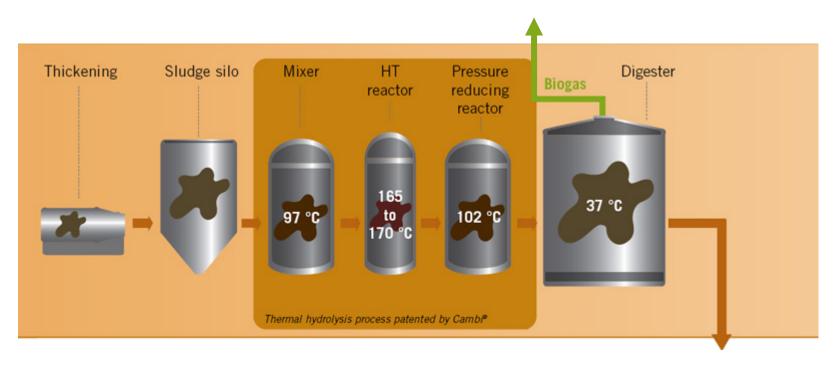
13 years of experience with Cambi THP system


Claude Prévot Harald Kleiven

DIGELIS Turbo in the Degrémont digestion line


(*) The performances with biological sludge are inferior but their treatment is possible

What is Digelis Turbo?

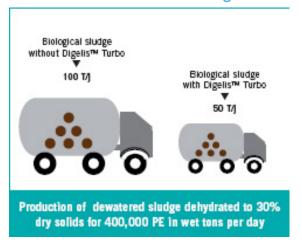

The specificity of DIGELIS Turbo: thermal hydrolysis process

Thermal hydrolysis disintegrates the cellular structure of bacteria and solubilizes exopolymers to yield an easily digestible product

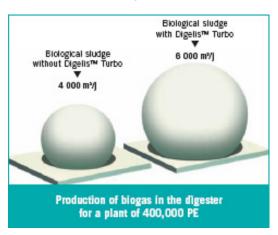
DIGELIS Turbo functional principle

30 to 50% extra biogas for use for electricity or heat

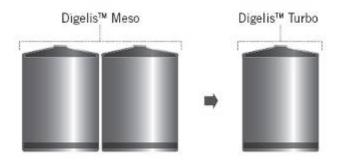
Sanitized digested sludge up to 30 to 40% TS after dewatering

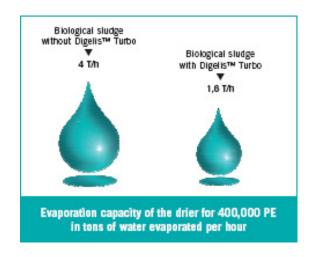

Digelis Turbo: performances

Parameters	DIGELIS Meso (37°C)	DIGELIS Turbo		
Retention time	20 days	15 to 20 days		
Ratio of digester volume	1	0.5		
TS inlet concentration	4 – 6%	9 – 12%		
VS Load	2-3 kg/m³/day	>5 kg/m³/day		
рН	6.8-7.5	7.5-8		
Extended aeration VS removal	30 to 35%	40 to 45 %		
Mixed sludge	45 to 50%	50 to 55 %		
Foaming	Possible presence of Nocardia, Microthrix	NONE		


DIGELIS Turbo's main advantages

The DIGELIS Turbo process:


Reduces the cost of sludge removal


Increases the production of usable biogas

- Doubles the capacity of digesters

Reduces the capacity needed for the final drying step

CAMBI, a partner with more than 10 years of experience

-						
Customer/project	Location		Capacity (TDS/year)	TYPE	Completed	
HIAS (1)	Hamar	Norway	3,600 tonnes	WWTP	1996	
Thames Water (2)	Chertsey	UK	9,600 tonnes	WWTP	1999	
Borregaard Industries	Sarspborg	Norway	4,000 tonnes	PAPER	2000	
The Municipality of Næstved*	Næstved	Denmark	1,600 tonnes	WWTP*	2000	
Nigg Bay	Aberdeen	UK	16,500 tonnes	WWTP	2001	
"Mjøsanlegget", Biowaste Plant	Lillehammer	Norway	4,600 tonnes	OFMSW	2001	
Ringsend Sewage Treatment Works	Dublin	Ireland	36,000 tonnes	WWTP	2002	
The Municipality of Fredericia	Fredericia	Denmark	8,000 tonnes	WWTP	2002	
Kobelco Eco-Solutions	Niigata	Japan	1,200 tonnes	WWTP	2002	
Spolka Wodna Kapusciska	Bydgoszcz	Poland	8,000 tonnes	WWTP	2005	
Thames Water	Chertsey	UK	Included in (2)	Operations	2005 - 12	
HIAS, thermophilic digester	Hamar	Norway	Included in (1)	New digester	2005	
Oxley Creek	Brisbane	Australia	12,900 tonnes	WWTP	2007	
Bruxelles Nord	Bruxelles	Belgium	20,000 tonnes	WWTP	2007	
Amperverband, Cambi THP-C*	Geiselbullach	Germany	2,000 tonnes	WWTP	2007	
HIAS-Upgrade	Hamar	Norway	3,600 tonnes	WWTP	2007	
Cotton Valley (Anglian Water)	Milton Keynes	UK	20,000 tonnes	WWTP	2008	
Ecopro, multi-waste** plant	Verdal	Norway	8,000 tonnes	OFMSW**	2008	

CAMBI, a partner with more than 10 years of experience

Whitlingham WWTW (Anglian Water)	Norwich	UK	19,000 tonnes	WWTP	2008
Bran Sands (Aker-Kværner/NWL)	Tees Valley	UK	37,000 tonnes	WWTP	2008/9
Nigg Bay, upgrade	Aberdeen	UK	4,000 tonnes	WWTP	2008
Biovakka Oy	Åbo/Turku	Finland	14,000 tonnes	WWTP	2008
Palm Jumeirah /Degremont (LOI)	Dubai	UAE	25,000 tonnes	WWTP	2009
Vilniaus Vandenys/Vilnius Water Co.	Vilnius	Lithuania	23,000 tonnes	WWTP	2009

CAMBI Digelis Turbo: new developments /early design

 Over 12 years of continuous and ongoing developments since the starting of the first Cambi systems: for more reliable plants

Main modifications of the early design:

- Handling of hot sludges : choice of material for pumps
- Odour treatment : to avoid any harmful effect
- Heat exchangers before digester: to avoid scaling
- Safety equipments to protect the vessels
- Vessel design (pulper / reactor / flash tank) to avoid abrasion or to operate at higher temperature and pressure
- Digester design and operation to treat concentrated sludge

Reliable hot sludge pumping,

Upgrade of all pumps to avoid swelling/shrinkage due to heat cycles

- •Slow running pumps with H5 stators
- Duty standby digester feed pumps

Extension of the lifespan of the pumps to more than 8000 h

Simple and reliable odour control system

Foul gas injection skid

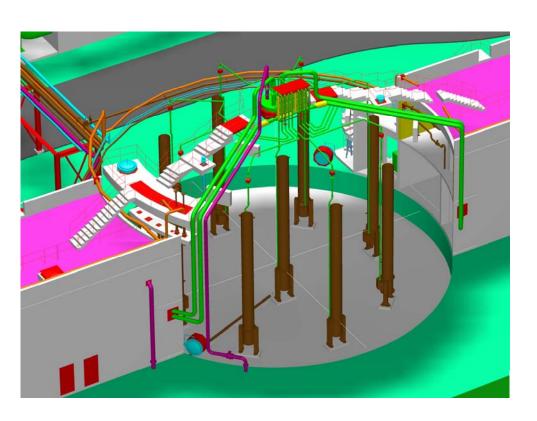
New compact skid to quench the foul gas before sending the liquid and incondensable gas back to the digester

Cambi / Digelis Turbo optimisation: heat exchangers

Installation of a digester recirculation line to main cooling unit to reduce the viscosity, to increase the pH and to maintain constant flow

Leak proof and tamper proof safety devices

All vessels are full vacuum rated: gives extra safety



Vacuum break valves with bursting discs, in locked position

Pressure relief valve with bursting discs

Digelis Turbo: digester design

Higher organic loads and concentrated sludge :

- implementation of an effective mixing system
 - Cannon mixers for large volumes
- control of ammonia concentration

Strict control of the process parameters to produce a very easily dewaterable sludge and optimize the energy balance

DIGELIS Turbo with Cambi THP system

- An opportunity for reduction of fossil energy consumption inside the plant
 - Enhance the production of green energy with biogas
- An opportunity to make reliable downstream files
 - Strong / High stabilization and sanitization of sludge
 - Solid matter reduction
- An opportunity for optimization of the plant design
 - Increasing of digesters capacity
 - Reduction of equipment size on the downstream technologies (thermal drying, ...)

A symbiotic process : no optimum dewaterability without optimum digestion and thermal pretreatment